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Introduction

Sound processing systems, and in particular speech pro-
cessing systems, typically are based on 3 main steps (see
e.g. [1]), as schematically shown in fig.1:

(1) Sound detection (Transduction): For this step, micro-
phones (nowadays often MEMS-based) with linear trans-
fer characteristics, a self-noise floor of 20 — 33 dB sound
pressure level (SPL) and a dynamic range of 100 — 120
dB are typically applied. Measurement microphones can
offer a lower self-noise floor down to 0 — 7 dB SPL.

(2) Signal conditioning and Feature extraction: In this
step, signal conditioning like amplification, filtering as
well as nonlinear transformation of the signal are ap-
plied. Furthermore, features of various complexity are
extracted. Low complexity features are, e.g., the enve-
lope or the zero crossing rate in time domain as well as
central spheroid in the frequency domain. Often, a time-
frequency representation of the signal, known as spectro-
gram, is calculated. More complex features are rhythm,
chords, note onset or genre, amongst others.

(8) Sound/Speech processing: This steps describes classi-
fication, regression, and/or prediction of sounds/speech.
It is typically based on neural networks (NN), most com-
monly on recurrent, convolutional or transformer [1].

Thereby, the signal conditioning and feature extraction
stage has a strong influence on the performance of the
sound/speech processing system, since it improves the
clustering of data [2]. In most cases, feature extraction
and sound processing are implemented software-based,
requiring an analog-to-digital conversion beforehand.
Despite the strong increase in performance of these sys-
tems, several problems are not yet solved (see e.g. [2], in
particular: (i) their performance drastically decreases for
decreasing signal-to-noise ratios (or high levels of noise),
(ii) these systems have a considerable latency due to the
typically software- and cloud-based implementation of
step (2) and (3), (iii) these systems mostly do not support
local learning due to the complexity of speech models and
required computation power.

One way to address these issues, which was inspired by
the working principle of human hearing, is to integrate
signal conditioning and feature extraction in the sens-
ing/transduction stage itself (see fig. 1). In human hear-
ing the most important processing steps are frequency
decomposition, amplification and compressive transfer
characteristics [3]. The latter two are thereby dynami-
cally adaptable for changing inputs and acoustic environ-
ments. Thus, the signal is filtered and amplified before
sensing takes place, increasing the signal-to-noise ratio
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Figure 1: Comparison of automatic speech processing sys-
tems and human hearing process. While in technological sys-
tems, signal processing and feature extraction takes place af-
ter transduction of the signal (’sensing’), these steps are per-
formed before/during the transduction process in the biolog-
ical system.

considerably while decreasing the latency. Furthermore,
for small signal-to-noise ratios, this effect helps taking
up only the relevant signal without amplifying the noise
as well. In biological hearing systems, this effect is be-
lieved to be responsible for the superior property of hear-
ing signals with 0 dB SPL, which effectively are in the
same range as the thermal noise level [3]. A sensor sys-
tem incorporating these functionalities should improve
the latency of the system, decrease data streaming needs
and increase its overall efficiency. We developed such a
sensor system [4], which will be described in detail in the
next section. The goal of this study was to improve the
sensing properties by re-designing the transducer.

Bio-inspired, acoustic sensor system

Our bio-inspired acoustic sensor with signal condition-
ing and feature extraction functionality is based on a
linear acoustic sensor in connection with an high-speed
feedback [4], schematically shown in fig. 2. Thereby, the
transducer is a silicon beam (350 x 150 x (2 — 5) pm?)
with integrated deflection sensing using the piezoresistive
effect and with an integrated actuator based on the bi-
morph effect (thermomechanical actuation principle) [7].
The feedback loop amplifies the sensing signal and adds
a bias offset, before feeding the signal back to the actua-
tor on the transducer. Feedback is realized in an FPGA
structure for test purposes and in analog circuits to de-
crease latency decrease and increase efficiency [6]. Using
this setup, it could be shown that the sensor system can
undergo a Hopf bifurcation by changing either the feed-
back strength, corresponding to the amplification factor,
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or the bias offset.
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Figure 2: Schematic setup of system for bio-inspired, non-
linear, adaptive acoustic sensing.

Depending on these values, three sensing modes can be
realized: (i) a passive mode with linear transfer char-
acteristics, if the feedback is turned off, (ii) an active,
linear mode, in which the gain of the transducer can be
increased by increasing the feedback strength, but retain-
ing linear transfer characteristics, and (iii) an active non-
linear mode with nonlinear (compressive) transfer char-
acteristics, i.e. an SPL-dependent gain, which is strongly
increased for low SPL. Furthermore, the sensor system
performs a frequency decomposition of the signal, since
each transducer is operated at its resonance. Thus it acts
like a band-pass filter. Finally, it was already shown, that
a dynamical adaptation of the system to different inputs
can be easily implemented [6], e.g. as an amplitude de-
pendent gain switching for highlighting the sound onset
and increasing the dynamic range.

Despite these promising functionalities, the transducer
design was derived for application in atomic force mi-
croscopy [5] yielding rather poor acoustic sensing prop-
erties, i.e. a self-noise level of roughly 60dB SPL and
rather large resonance frequencies of 10kHz to more
than 500 kHz, which cover only partly the audible range.
Thus, to improve the acoustic sensing properties, we tai-
lored the transducer by changing its geometry, as de-
scribed in the next section.

Design considerations

The redesign shall achieve two goals: (i) decreasing the
resonance frequency to enable coverage of the audible
range with an array of transducers with different res-
onance frequencies and (ii) increase the sensitivity and
decrease of the self-noise floor. The new design of the
transducer is shown in fig. 3. The changes in the design
according to the above listed two design goals (frequency
change and sensitivity increase) are described in the fol-
lowing separately.

Following the FEuler-Bernoulli theory for single-side
mounted, rectangular beams (length>width), one can
derive a formula for dependence of the resonance fre-
quency on the geometric parameters length [, width w
and thickness d of the beam:
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Here, Eg; the elasticity module, ps; the density for Si, and
dp, a pre-factor for the n-th mode (6; = 1.8751). Since the
thickness d can be varied only in a certain range (1pm-
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Figure 3: Sound-optimized design with increased length and
larger surface for lower resonance frequency and larger sensi-
tivity.

10 pm) with a tolerance of 1 pm, tuning the resonance fre-
quency of the transducer should mainly rely on changing
the length [ followed by a subsequent fine-tuning by vari-
ation of thickness d. Thereby, to achieve frequencies of
> 1kHz, a transducer length of up to 1350 pm is suffi-
cient (with d > 2pm), while for f < 1kHz sensors with
[ = 2600 pm were fabricated.

To increase the sensitivity of the sensor, the force ex-
erted on the transducer by the sound pressure had to
be increased. Since the transducer operates as a pres-
sure gradient sensor, the force can be calculated by
F = [ Ap(z,y)dA with the sound pressure drop Ap be-
tween front and back side of the transducer and A the
transducer surface. Thus, increasing the sensor surface,
in particular by changing its width, will yield a larger
force on the transducer for the same SPL, since it in-
creases (1) the surface, the force acts on, and (ii) the path
for the sound pressure around the sensor, thus increasing
the pressure drop Ap. To obtain this, first, the beam
shape was modified to a more triangular-like shape with
a larger width compared to the previous design and sec-
ond, a membrane was added around the sensor to reduce
the acoustic short circuit effect and increase the pressure
gradient (see fig. 3). Membrane and beam are separated
by an air gap, which has several advantages compared
to the case of a sensor with the width of the membrane.
First, it reduces the mass and spring constant of the sen-
sor, which increases the deflection and sensitivity for a
similar force. Second, it reduces the likeliness of the ex-
citation of torsional modes (which become more likely the
larger the width of the sensor is compared to its mount-
ing). If the gap is smaller than the thermoviscous layers,
it acts like a sound soft boundary and the sound path
will be around the complete system of sensor and mem-
brane. Thereby, the thickness of the thermoviscous layers
is strongly frequency-dependent: dyisc = \/2#/wpar With
the dynamic viscosity u, the sound frequency w and the
density of air p,;;. We choose a gap width of 15 pm, thus,
the air gap should be acting as soft sound boundary in
the audible range. In the following sections, the sensing
properties of the new design are presented obtained from
measurements in an anechoic chamber and simulations
performed in Comsol.

Acoustic sensing properties
To obtain sensing properties like self-noise floor, sensitiv-
ity and gain, we performed measurements of the sensor



system in an anechoic chamber (see fig. 4). For this pur-

Figure 4: Measurement setup for determining the self-noise
floor and the sensitivity of the sensor system in an anechoic
chamber.

pose, the loudspeaker (Neumann KA310A) was placed
in a distance of 4.35m to the sensor system, while for
reference measurements another microphone (MT Gefell
MV203 + MV221) was placed 5.5cm beside the sensor
system. The sound field around the sensor system was
tested to be homogeneous within a tolerance of 1.5dB
SPL. To obtain the sensitivity or gain value, a frequency-
sweep signal with a duration of 2s and a frequency range
of 2 or 3 kHz around the resonance frequency was applied.
The root-mean square (RMS) amplitude of the driving
signal was normalized to 1V. The SPL was varied by
changing the dB full scale value for the driving voltage
of the loudspeaker. Sound pressure levels of 15 — 75dB
SPL were tested, and the sensing amplitude was mea-
sured at resonance.

In fig. 5 the obtained gain of the sensor system is shown
for the old design (upper graph) and the new design
(lower graph). For both designs, the above described
three operation modes in dependence of the feedback
strength are observed. For the old design, we obtained
the following values for the gain: 0.04 V/Pa for the pas-
sive mode and maximal 0.14 V/Pa for the active linear
mode. The gain in the active linear mode can be adjusted
between the passive value of 0.04 V/Pa and 0.14 V/Pa as
maximal value by changing the feedback strength. Thus,
while the passive mode gain is comparable to standard
measurement microphones, the gain can be strongly in-
creased by active operation (up to 5x). In the active
non-linear mode, a maximal gain of 0.23 V /Pa is observed
for a minimal SPL of 59dB SPL, which decreases with a
slope of 0.015 (V/Pa)/(dB SPL). The black dashed line
in the graph indicates the minimal self-noise floor, ob-
tained in the active non-linear mode. We determined a
self-noise floor of 59dB SPL, which increases to 62dB
SPL in the passive mode.

For the new design, the gain increased strongly compared
to the old design, i.e. = 3V/Pa in the passive mode,
maximal 25 V/Pa in the active nonlinear mode and max-
imal 49 V/Pa in the active non-linear mode. This corre-
sponds to an increase in gain by a factor 75 — 200 due to
the redesign of the sensor. The self-noise floor decreased
to minimally 18 —20 dB SPL in the active nonlinear mode
and 26 — 28dB SPL in the passive mode. This corre-
sponds to a decrease by 34 — 41dB SPL in comparison
to the values of the old design.

Besides the gain and self-noise level, we analyzed the sig-
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Figure 5: Gain of sensor system for old transducer design
(upper graph) and new transducer design (lower graph) ob-
tained from 4 different sensors and for the three operation
modes: passive (black box), active linear mode (blue box) and
active non-linear mode (orange box). The black dashed line
indicates the self-noise floor for the active non-linear mode.
The dotted, dash-dotted lines are linear fit to the data points.

nal distortion introduced by the sensor system. There-
fore, a single tone at the respective resonance frequency
of the transducer (f = 3.79kHz) was applied and the
response measured at the resonance frequency and the
higher harmonics. For feedback strengths larger than ap-
proximately half the critical value, the second harmonic
response occurs, while for lower feedback strengths only
the first harmonic is observed. This indicates the onset of
(slightly) nonlinear behaviour. The corresponding total
harmonic distortion value (THD) increases from 0.2 % at
the first occurrence of the second harmonics peak in the
frequency response for a = 0.25 to roughly 1% at the
highest feedback strength in the active nonlinear mode
(a = 0.5). For larger feedback strengths, self-excited os-
cillations are observed due to the system undergoing the
Hopf bifurcation (as described above). In this range, mul-
tiple higher harmonics occur in the frequency response,
yielding an increase of the THD value to 1.36 % for a feed-
back strength a = 0.56 slightly above the critical value
(a =0.51).

Finally, to obtain the directionality and to study the
damping and influence of the surrounding membrane of
the sensor system, numerical simulations of the system
were conducted using COMSOL Multiphysics. The sim-
ulation setup is shown in fig. 6. Plane wave excitations
are used. Geometric non-linearities as well as a deformed



DAGA 2022 Stuttgart

1 }
1 i t ! 1 / y |
, 9 1\ ! Pt " -
y,}] : t >t
Figure 6: Setup for the simulation: the beam is mounted
on one side (fixed constraint). Sound input is given as plane
wave in free field (using spherical wave radiation), indicated
by the arrows.

mesh are included to avoid mesh distortion for large dis-
placements. To model damping, a mechanical loss fac-
tor is used as well as thermoviscous damping, due to
the small size of the transducer. Thermoviscous damp-
ing yields a decrease of the quality factor from roughly
11000 to ~ 200, an effect known for oscillating micro-
beams in gas or fluid environment [8] and for sound
propagation in/near small structures [9]. Furthermore,
the simulations reveal the occurrence of a resonance by
the surrounding membrane. Nevertheless, the resonance
is clearly separated from the transducer resonance and
yields only a negligible sensing signal.

~
~

Finally, the simulations were used to study the direction-
ality of the sensor system. Therefore, the angle, describ-
ing the direction of the incoming wave in the xz-plane,
was varied between 0 — 180° in 5° steps. The pressure
amplitude was set to 1 Pa. The result is shown is polar
plot in fig. 7. As expected for a gradient pressure sensor,
the system shows a figure-of-eight directionality. Here, a
decrease by > 10dB compared to the zero-degree input
is observed in the range of 75 — 105°.
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Figure 7: Directionality, shown as polar plot, of the sensor
system obtained from Comsol simulations.

Conclusions

Here, we presented the re-design of the transducer of
our bio-inspired, adaptable acoustic sensor to improve
the acoustic sensing properties. Particularly, the goals
were to decrease the resonance frequencies to the range
of 0.5—10kHz to enable the coverage of the audible range.
This was achieved by increasing the length of the trans-
ducer to 1350 pm or 2600 pm, respectively. The second
goal of the re-design was to increase the sensitivity and
decrease the self-noise floor of the sensor. Therefore, (i)
the surface of the sensor was increased by increasing its
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width, (ii) its spring constant was decreased by using a
more triangular-like shape and (iii) an additional mem-
brane was added increasing the path for the sound wave.
All these changes together resulted in an increase of the
gain by a factor of 75 (passive mode) to 200 (active non-
linear mode) and a reduction of the self-noise floor by
24 dB (passive mode) to 39dB (active mode). In sum-
mary, the sensor exhibits sensing properties comparable
to measurement microphones while additionally offering
sensor-based feature extraction like frequency decomposi-
tion of the signal and nonlinear transformation, which are
important for the performance of sound processing sys-
tems. Integration of these functionalities into the sensor
may help address current issues regarding performance
reduction of speech processing for noisy signals and effi-
ciency of speech processing systems.
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