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Introduction

Silencers are usually filled with porous material, as shown on
the left hand side in Figure 1. When the sound wave travels
through the porous silencer, friction losses occur inside the
material, which reduces the particle velocity and hence sound
pressure level.

Figure 1: Porous (left) and resonant (right) silencers.

As indicated in Figure 2, typically porous silencers have a
maximum in transmission loss around the mid audio
frequency range. Towards higher frequencies, the
effectiveness is limited by the dimension of the free cross-
section. Towards low frequencies, the effectiveness is mainly
limited by the acoustic absorption of the porous material
layer.
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Figure 2: Typical transmission loss of porous and resonant
silencers.

This is not ideal, since the sound emissions of typical sound
sources, such as fans or motors, have significant low
frequency components, as indicated by the shaded area in
Figure 2. For this reason silencers based on porous material
alone, are often not a suitable solution.

One way of making silencers more effective at low frequency
range is to integrate acoustic resonators, as shown on the right
hand side in Figure 1. However, to be effective at low
frequencies acoustic resonators with a large volume are
required. Hence, low frequency silencers available today
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feature only a small number of resonators or even only one
acoustic resonator. They also tend to be bulky and can be
expensive. A new approach to reduce low and mid audio
frequency noise is that of acoustic metamaterials, based on
arrays of acoustic resonators.

Metamaterials are artificial resonant structures, often based on
a periodic sub structure, which combine local resonance
effects with effects due to periodic spacing and geometric
distribution. In noise control applications, this can be used to
maximize absorption and reduce installation space. The
essential question for silencers based on acoustic
metamaterials are, if and how one single Resonator can be
replaced by several resonators in order to reduce the required
installation space and to increase the performance in terms of
transmission loss at the same time.

In this paper, periodic resonator arrangements are discussed
with respect to Bragg reflections and the propagation of Bloch
waves in ducts.

Theory of Bloch waves in ducts

Bloch waves are waves, e.g. electromagnetic or mechanical,
which move through a periodic potential. With this type of
wave propagation special effects occur, which are discussed
in this section for the case of one-dimensional acoustic waves.
In ducts one-dimensional plane wave propagation occurs
below the cut-on frequency. The description is based on
Bloch’s theorem, given by equation 1. Bloch’s theorem says
that the pressure field p(x) has the same structure as the
periodic potential A(x), with K the Bloch wavenumber.

p(x) = A(x) - e )

First, the effect of a single impedance jump for two different
frequencies is discussed. Then the wave propagation for
multiple, periodic impedance jumps, is described, again for
two different frequencies. The impedance jumps are
introduced by an instant change of the bulk density p from
density p; to density p,, as shown in Figure 3. A “forward”
travelling wave from left to right is considered. At each
impedance jump, the wave is partly reflected and the
backwards travelling wave overlays with the incident wave.
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Figure 3: Single (upper) and periodic (lower) impedance
jumps, introduced by instant change of the bulk density.
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As depicted in Figure 4, in the case of a single impedance
jump, the reflected wave interferes with the incident wave and
the transmitted part travels further to the right but with lower
amplitude. Because this effect is frequency independent, the
amplitudes of the transmitted waves are identical. The
transmission loss due to a single impedance jump introduced
by a change in bulk density depends only on the ratio of the
densities, where a higher ratio results in a higher impedance
jump and a higher transmission loss.

~\ ' single 1000 Hz
1.0 /f ———single 500 Hz
w
L o5
2
=1
w
¢ 0.0} J
£ /
o f
E /!
3 0.5 1 f i
3 /i
1.0} / g
PPy

1.0 1.5

length (m)

Figure 4: Sound pressure for two different frequencies along
the waveguide with a single impedance jump, shown in the
upper part of Figure 3.

However, as shown in Figure 5, in the case of multiple
periodic impedance jumps the result of the interfering waves
is strongly frequency dependent.
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Figure 5: Sound pressure for two different frequencies along
the waveguide with multiple periodic impedance jumps,
shown in the lower part of Figure 3.

If the wavelength of the incident wave corresponds to an odd
multiple of half the periodic spacing A, the amplitude along
the waveguide decreases exponentially (500 Hz in Figure 5).
This is the so-called “Bragg condition”. If extended to infinity
no wave propagation is possible in such a structure. Therefore,
these frequency ranges are called “stopbands”.

If the wavelength of the incident wave corresponds to an even
multiple of half the periodic spacing A, the amplitude along
the waveguide is constant (1000 Hz in Figure 5). Although
the wave is partly reflected, the wave can propagate without
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losses. This is because the reflections are in phase. Therefore,
these frequency ranges are called “passbands”.

Figure 6 shows this frequency-dependent property, where the
transmission loss is plotted over the Helmholtz number
defined as ratio of the periodic spacing over the wavelength.
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Figure 6: Transmission loss over the Helmholtz number.

The transmission loss is very high for some frequencies, for
which the Bragg conditions are met (green arrow in Figure 6).
The width and attenuation in these stopbands depends on the
ratio between the two bulk densities. A higher ratio, e.g.
higher jump in impedance, results in wider bands and higher
attenuations. On the other hand, the transmission loss is close
to zero for frequencies where the Bragg conditions are not met
(blue arrow).

In the finite case, this transmission loss behaviour can be
analysed analytically with the Transfer-Matrix-Method [1]. A
one-dimensional waveguide can be modelled with a
distributed element, given by equation 2, where [ is the length
of the waveguide, Y = pyc,/S is the characteristic
impedance and S is the surface area of the cross section.

cos(kl)
/Y sin(kl)

JjY sin(kl)

cos(kl) 2)

T yistrivutea = []

The entire finite waveguide is obtained by multiplying the
individual elements, as given by equation 3.

n
Trinic = nTi
i=1

For a waveguide with a constant cross section, the
transmission loss is given by equation 4.

3)

T11+T12/Y+T21 ' Y+T22
2

In the infinitely periodic case, the band structure behaviour is
analysed with the Bloch wave theory [2]. This analysis is
based on the concept of the unit cell, the periodically repeating
part of a structure with periodic boundary conditions.

TL =20lg (4)

The first step in the Transfer-Matrix-Method is the definition
of the unit cell, given by equation 5.



Ty =T,T, 5

The second step is the introduction of the periodic boundary
conditions using Bloch's theorem (eq. 1), which leads to
equation 6 and the eigenvalue problem, given by equation 7.

Pn _ Pn+1 _ _iKA Pn+1
qn] - Tcell qn+1] -¢ qn+1] (6)
|Tcell - eiKA| =0 (7

The solution of the eigenvalue problem is given by equation 8
and is called the band structure.

cos(KA) = %(T11+T22) (3

Figure 7 shows the band structure for the periodic impedance
jumps (compare Figure 3). The results illustrate, that the stop
bands occur at the odd multiples of the Bragg condition (green
arrow), while the even multiples result in passbands (blue
arrow). The left half of the diagram shows the imaginary part
and the right half the real part of the normalized Bloch
wavenumber. A stopband occurs if the imaginary part is non
zero or the real part is constant.
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Figure 7: Band structure for the periodic impedance jumps,
as shown in Figure 3.

The procedure of deriving the band structure in the finite
element method (FEM) is similar to that in the Transfer-
Matrix-Method [3]. As before, the first step is the definition
of the unit cell. In the FEM, the geometry must be created and
the material parameters must be defined. Then the periodic
boundary conditions must be implemented, as shown in
Figure 8.
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Figure 8: FEM model with periodic boundary conditions.

p, = pye KA
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After that, an eigenfrequency analysis of the unit cell is
conducted, which gives the Bloch modes. Plotting the
eigenfrequencies over the Bloch wave number gives the band
structure.

Figure 9 shows the comparison, between the band structure
solution derived using the Transfer-Matrix-Method and the
solution from the FE analysis of the periodic impedance
jumps (compare Figure 3) are in good agreement.
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Figure 9: Comparison of the band structure solution from
the TMM an FEM.

Experimental validation

Experimental studies have been conducted for validation.
Instead of the periodically changing densities, the impedance
jumps were generated using periodically arranged quarter
wavelength resonators. The dimensions of the duct cross
section are chosen such that the cut-on frequency is above the
frequency range of interest. The length of the resonators and
their periodic spacing are chosen such that the resonance
frequency of the resonators and the Bragg frequency are
identical. These parameters are chosen to create a stop band
around 245 Hz. The dimensions are depicted in Figure 10.

dqwt =01m

Figure 10: Unit cell with a quarter-wave resonator for the
experimental validation.
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The measurements were conducted on a silencer test bench
according to ISO 7235 located in the DAKKS accredited
laboratory at the Fraunhofer IBP in Stuttgart. Obviously, an
experimental validation can only be performed for a finite
resonator arrangement. Thus, an arrangement with seven
resonators was chosen, as shown in Figure 11.

Figure 11: Test setup with seven quarter-wave resonator.

Figure 12 shows the measured and simulated transmission
loss for the periodic arrangement of seven resonators in the
frequency range between 100 Hz and 2000 Hz. The
comparison shows a good agreement, especially for the first
two stopbands. It should be noted that in the experimental
results the maximum transmission loss in the first two
stopbands is limited to a maximum of about 60 dB, which is
the limiting transmission loss of the test bench. The
comparison of the bandwidths of the measured stopbands with
those of the predicted infinite stop bands (green shaded area)
also shows reasonable good agreement at least for the first two
stopbands. With increasing frequency the discrepancies
between the experimental results and simulations increases.
This is because the acoustic wavelength is decreasing with
increasing frequency, and hence the absolute errors in the
geometry of single resonators and the periodic spacing
become increasingly important. This also means that Bragg
conditions are not exactly matched at higher frequencies and
the Bragg stop bands become defective.
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Figure 12: Comparison of measured and simulated

transmission loss. Green shaded areas show the stopbands.

Outlook to further resonator concepts

The measurement results show that high transmission losses
can be achieved with periodic resonator arrangements. The
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next question is how such an arrangement can be implemented
in real ducts? One approach to construct acoustic resonators
in a compact, space cfficient way is that of a spiral resonator.
Such a resonator for a round ventilation duct has been
designed using the FEM. After the design was completed, an
additive manufacturing process was used to fabricate the first
prototype of the resonator, shown in Figure 13.

Figure 13: Prototype of a spiral resonator.

Additionally, the integration of active components has been
studied with the aim to increase the acoustic performance of
the resonator. For this, the spiral resonator is simulated with
an integrated loudspeaker, and for different control concepts.
The simulations show, that the resonance frequency can be
tuned down to lower frequencies by more than one octave.

Figure 14: Spiral resonator with a loudspeaker as active
component inside.
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