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Introduction
Unmanned aerial vehicles (UAVs) are already in use for
a wide variety of tasks for which they are equipped with
various sensors such as video and thermal imaging cam-
eras or flight assistance systems. Acoustic sensors on
the other hand have not yet been widely adopted for
UAVs, even though they offer a wide range of possible
applications in combination with AI-based signal process-
ing. Acoustic event detection (AED), e.g., could extend
the sensing capabilities of UAVs by enabling them to re-
act to user-defined acoustic events automatically. Possi-
ble scenarios include locating emergency situations, au-
tonomous flight to the event location, automatic monitor-
ing of the acoustic environment, or triggering an alarm.
The acoustic sensor system required for AED must be
robust to external environmental conditions as it is in-
evitably subject to perturbations such as the air flows
through the rotors, operational noise, or wind noise. In
this work, we have investigated a set of commercially
available microphones for their suitability for such a sys-
tem. The H520 hexacopter by Yuneec International Co.
Ltd. was used as the carrier. We applied linear support
vector machines (SVMs) in conjunction with OpenL3 em-
beddings for the realization of AED. To train the sys-
tem, a dataset from the DCASE2020 challenge has been
extended with recorded noise to consider different use
cases.

Acoustical behavior of the drone
Acoustic sensors attached to drones are exposed to vari-
ous disturbing noises, such as the presence of wind. Ad-
ditionally, inherent noise also plays a significant role. To
determine a suitable position for the sensor, the acoustic
behavior of the drone needs to be considered. In order to
analyze the sound radiation, the hexacopter was installed
in an anechoic chamber of accuracy class 1 at Fraunhofer
IDMT [1]. The measuring setup is visualized in Figure 1.

The drone was positioned at the center of a circular mi-
crophone array with a radius of 1m using 1/4 ” Microtech
Gefell M360 microphones [2]. The measurements were
then performed with a duration of 10 s at a sampling
rate of 96 kHz. The H520 was oriented so that a boom
axis with two opposing drone motors was in the same
plane as the circular array. As the objective provides for
recording sound sources on the ground, the microphone
distribution of the array was oriented with the center of
the hemisphere below the drone. Consequently, the mi-
crophone distribution on the array was non-equidistant,
with the highest density of approx. 5.5° in the angular
range from 157.5° to 202.5°. The reference direction of 0°

corresponded to the position vertically above the H520.
In this area, there was only one measuring microphone
every 22.5°. Furthermore, three additional microphones
were placed under the drone body at a radius of 25 cm,
and one more in the center at a distance of 10 cm. Us-
ing these additional microphones, the influences of the
distance to the drone were analyzed.

Figure 1(c) shows the polar plot of the determined root
mean square (RMS) levels of the drone. In the area be-
tween microphones 9 and 17, the noise generated by the
airflow of the rotors is clearly visible. By analyzing mi-
crophone 28 it becomes obvious that closer positioning to
the body of the drone decreases the RMS level. Similarly
at the rotor plane (microphones 5 and 21), a low RMS
level can be observed. Regarding the detection of sound
sources on the ground, these positions are not suitable
for mounting microphones.

Besides the RMS levels, the peak levels are also shown
in Figure 1(c). The significant discrepancies between the
RMS and peak levels are due to slightly different rotor
speeds caused by the drone’s automatic flight control.
These speed variations cannot be addressed within the
scope of this investigation due to the lack of interfaces.

From the measurement results it can be summarized that
an acoustic sensor should be mounted at a low distance
below the drone’s body. This way the shadowing effect
of the drone itself can be utilized to reduce interference
effects on the microphone. Furthermore, this allows an
unaffected alignment of the directional characteristic to
the ground.

Microphone selection and positioning
The objective of this study was to investigate the suitabil-
ity of professional microphones for realizing drone sup-
ported AED. Four Sennheiser microphones with different
directional characteristics were used for this purpose [3].
In order to assess the effect of the directional character-
istics on the reduction of noise interference, the various
microphones were positioned one next to the other at
a distance of 15 cm as well as 25 cm below the drone.
At each measuring position, the measurement was per-
formed both with and without the provided foam wind-
screen. The microphones were calibrated via the sub-
stitution method, using a speaker at a distance of 1.5m
emitting a 1 kHz sine tone [4].

Table 1 lists the measurement results. The MKH 8040
and MKH 8050 microphones have the lowest attenuation.
This can be explained by their cardioid and supercardioid
characteristics. Even though an ideal cardioid pattern
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(a) Mounting system for drone measurements
in anechoic chamber.
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(b) Measurement array setup.
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(c) Polar plot of the noise emitted by the drone.

Figure 1: Measuring setup and result to determine the noise radiated by the Yuneec H520 drone.

RMS-Level [dB]
Mic No wind protection Wind protection

15 cm 25 cm 15 cm 25 cm
MKH 8040 -16.3 -16.7 -29.6 -29.7
MKH 8050 -17.6 -18.3 -28.8 -30.1
MKH 8060 -32.4 -30.2 -39.9 -38.3
MKH 8070 -47.8 -45.9 -54.0 -46.7

Table 1: RMS levels of the individual microphones. High-
lighted cell marks the best result.

results in cancellation at rear sound incidence, the atten-
uation at 90° is only -6 dB, which leads the microphone to
pick up large portions of drone noise and wind effects. A
supercardioid microphone achieves a theoretical atten-
uation of -8.6 dB at 90° sound incidence. However, an
attenuated side lobe from the 180° direction is disadvan-
tageous. Consequently, rear incident sound components
are recorded. These attenuation values are idealistic, and
real microphones deviate from them for physical reasons.
By contrast, an interference tube microphone is char-
acterized by its high directivity, depending on the tube
length. Using the MKH 8070, the attenuation is higher
than with the MKH 8060, since the directivity of the
interference tube begins at lower frequencies. Further
attenuation of the drone interference could be achieved
provided that the windscreen of the microphone was still
within the shadowing area by the drone body. This was
not valid for the MKH 8070 at a distance of 25 cm below
the drone because of the size of the microphone. There-
fore, the MKH 8070 is mounted 15 cm below the drone
body in the prototypical evaluation.

Acoustic event detection
This feasibility study focused on a general investigation
of implementing AED with a drone. No specific use cases
were investigated, but rather the general detection of spe-
cific signals.

Datasets
The DCASE2020 Challenge (Task 5: Urban Sound Tag-
ging With Spatiotemporal Context) datasets were used
as baseline data. It comprises ten-second recordings of
various acoustic sensors from New York City, and is di-

vided into eight main classes: Engine, Machinery Impact,
Non-Machinery Impact, Powered Saw, Alert Signal, Hu-
man Voice, Music, and Dog [5]. With regard to the data
acquisition procedure of mentioned DCASE2020 dataset,
the individual audio files consist of various combinations
of these event classes. Such combinations are also re-
ferred to as soundscapes [6]. To preserve the original per-
centage distribution of the dataset after splitting it into
all of the subsets (train, validation and test), any combi-
nations occurring less than six times were augmented by
pitch shifting and time stretching.

The initial dataset primarily consists of urban sounds,
but many application scenarios of drones of this type take
place in rural areas. To account for this, we additionally
used Fraunhofer IDMT audio recordings of the rainfor-
est of the Täı National Park, Côte d’Ivoire [7], and partly
mixed the initial dataset with the forest recordings in an
SNR interval from -30LUFS to -6 LUFS using the Python
library Scaper [6]. To consider these additional sounds
within the annotations, the class Non-Machinery Impact
- comprising general environmental sounds - was added to
the extended soundscapes. Any newly introduced under-
represented class combinations were removed. Finally,
this extended dataset consisted of 19,791 soundscapes,
and we denote it as DR. In practice, an acoustic drone
sensor would also be exposed to airflow as well as in-
terfering sounds caused by the drone itself. Further-
more, the directional attenuation of environmental noise
by microphone characteristics is limited. Therefore, an
additional dataset was generated by combining DR with
variable drone noise from the Yuneec H520 at different
SNR intervals, prior to removing underrepresented com-
binations. This dataset subsequently comprised 19,972
soundscapes, and is referred to as DRD. Both DR and DRD

were split with a 66%-17%-17% ratio into train, valida-
tion and test subsets.

Feature extraction and classification method
The performance of a machine learning (ML) algorithm
can be critically dependent on the size of the available
dataset. According to the specific task, the creation of
large datasets is very time consuming and costly. Var-
ious deep learning models were trained in a supervised
or self-supervised fashion on large datasets in the field
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of acoustic event detection. These pre-trained mod-
els are designed to learn complex feature representa-
tions with strong discriminative power, called embed-
dings. Through transfer learning, the models can be used
to extract these embeddings from smaller datasets. In
this study, OpenL3 was used to extract the embeddings
due to their good performance in combination with linear
SVMs [8]. The following settings were used: content type
environmental videos, mel-spectrogram with 256 bands,
and an embedding dimensionality of 512.

SVMs have originally been developed to perform binary
classifications. Two classes are to be separated by a hy-
perplane in the feature space using as few data points
as possible (the support vectors). The SVM algorithm
chooses this hyperplane such that the distance between
the class boundaries is maximized. For subsequent clas-
sifications, only the support vectors are needed [9, 10].
Since the fundamental SVM algorithm is not suitable for
classification of larger numbers of classes, we split the
detection task into several binary one-vs-rest classifica-
tions, where the idea is to separate one of the available
classes from the remaining classes.

Experimental design and evaluation
A design criterion for our study was that the evaluation
has to be performed wrt. a liberal classifier. For the mon-
itoring task, a high recall is required to detect as many
events as possible. Therefore, we settle on experiments
with recall thresholds of R = 0.7 and R = 0.8 for the
performance evaluation of the SVMs [11]. Within this
range, the local maximum of the F1-scores (Eq. 1) is de-
termined on a class-by-class basis to derive the associated
decision threshold for each class.

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
=

2TP

2TP + FP + FN
(1)

First, we consider the classifiers trained on DR. The classi-
fiers show high F1-scores. It is noticeable that classes oc-
curring more frequently are better classified in contrast to
the more underrepresented ones, for example in Human
Voice vs. Dog. While the performance of Engine, Non-
Machinery Impact and Human Voice remains constant
with a minimum recall of 0.8, classification of the other
classes deteriorates. This can be attributed to the fact
that their best possible operating points, as measured by
the maximum F1, are below this recall threshold.

The focus is on the selection of a liberal classifier. The
SVM with a regularization parameter of C = 0.1 was
chosen for the further evaluation steps as it achieved the
highest F1-scores for both recall thresholds over most
of the classes of the application scenarios. However, it
should be noted that the classification thresholds of in-
dividual classes are sometimes significantly below 50%.
This shows that the classifier assigns the positive class
for rather underrepresented classes at lower probabilities,
which inevitably worsens the precision.

With DRD, a significant degradation of the classifications
becomes apparent. Here, the lower the SNR between
drone sounds and the original soundscapes, the more the
performance is degraded. Even for these SVMs, varying

the C-parameter leads to no or only minor changes in the
metrics.

In summary, these results show that the combination
of OpenL3 embeddings and linear SVM can potentially
lead to a performant detection of relevant classes un-
der ideal conditions. However, drone noise in the mi-
crophone recordings is inevitable in a real in-flight sce-
nario. Therefore, a classifier needs to be able to handle
such noises without significantly degrading classification
performance. Further investigations are needed.

Real-world evaluation
When using a drone system to detect acoustic events in
real-world conditions, numerous uncontrollable interfer-
ing factors occur, such as wind or ambient noise. Ac-
cording to the results of the microphone investigations,
a prototype system was built using the MKH 8070 with
the Yuneec H520. The microphone was prepared with
its windscreen and mounted freely movable 15 cm be-
low the drone. In order to have a defined sound source,
two Seeburg TSNano speaker were placed on the ground
and oriented to radiate upwards. The sound pressure
level was calibrated using a white noise signal to achieve
100 dBSPL at a distance of 1m above the speakers. The
drone flights were conducted at a height of 10m above
the ground on a meadow near the Fraunhofer IDMT.
The setup is depicted in Figure 2(a). According to the
weather station of the Ilmenau University of Technology,
the wind speed on the ground was approx. 0.1m/s. How-
ever, light gusts occurred during test execution. Due to
the limited flight time of the multicopter, only 150 sound-
scapes (< 1%) of the evaluation data were used.

Figure 2c shows the classification results of the test flight.
The Engine, Non-Machinery Impact and Human Voice
classes achieve a recall between 0.89 and 0.95, and a F1-
score of 0.74 to 0.78. This implies that in terms of a
liberal classifier, a very good classification is possible.
Although Machinery Impact and Music show a recall of
1.0, the F1-scores are only around 0.3 due to a very low
precision of ≤ 0.21. Consequently, the number of false
positives clearly predominates here. In the case of the
remaining classes, F1-scores of < 0.4 also indicate insuf-
ficient performance.

In summary, the classes most frequently represented in
the train set tend to show a practical classification in
the application. However, these results may have been
negatively impacted by a number of issues. One of them
is potential misannotations in the original DCASE2020
dataset. In addition, due to the takeoff mass of the drone
and prevailing wind at an altitude of 10m, positioning
the multicopter precisely above the speakers proved dif-
ficult. This may negatively influence the results due to
the high directivity of the microphone, but at the same
time this highlights the problems in a real-world scenario.
More extensive test flights using the full evaluation set
would be required for a final assessment.
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(a) Flight of the
prototype system.
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(b) Experimental design.
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(c) Classification results.

Figure 2: Evaluation results of the prototype system consisting of a Yuneec H520 multicopter equipped with a Sennheiser
MKH 8070. The system performed classification tasks of acoustic events under real-world conditions using two speakers as the
sound source. P = Precision, R = Recall.

Conclusions
The evaluation of the prototypical implementation was
done by automated playback and parallel recording of
selected soundscapes. These recordings were submitted
to feature extraction and finally to classification. The re-
sults under controlled conditions indicate that the classi-
fiers can exhibit high recall and F1-score on the Engine,
Non-Machinery Impact, and Human Voice classes. The
best results were obtained when drone noise with an SNR
of -6 to 10LUFS is included in the training. From this
proof of concept, it can be concluded that AED in con-
junction with a multicopter is generally feasible. Never-
theless, these are only tendencies which must be further
investigated by optimizing the individual components of
the concept, and supplementary evaluation steps.
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