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Abstract
The most common method for measuring precipitation
is based on the collection of rain in a defined container,
where the amount of water accumulated is read off after
a time interval. A major disadvantage of this method
is that the rainfall amounts measured in this way al-
ways represent an average over time, and do not pro-
vide data on the course of precipitation with high tem-
poral resolution. Since time immemorial, meteorological
elements have been described colloquially by their gen-
erated sounds. Following on from this, the aim of this
study was the implementation of an acoustic rain sensor.
For this purpose, acoustic data were generated in a labo-
ratory setup by a simplified sprinkler system, with which
a machine learning algorithm was trained.

Introduction
According to a recent report of the United Nations (UN)
the climate change will cause a significant increase in
natural disasters and extreme weather events [1]. Con-
sidering the prognosticated global warming, in the year
2100 we would face a four to five-fold increase in extreme
weather events compared to 2022. Because of the drastic
effects of such events on both humanity and infrastruc-
ture, the UN underlines the importance of the expansion
of early warning systems [2]. Besides this, in virtue of
the Deutscher Wetterdienst (DWD) 80% of the variance
of crop yields in Germany are referable to the weather.
Hence the prevention of damages due to the weather, as
well as the management adopted to it, is essential for
agriculture and forestry [3]. A challenge in weather fore-
casting today is accurately determining local weather im-
pact. One missing element is accurate spatially and tem-
porally highly resolved local precipitation data. These
data cannot be determined by systems in use today, such
as precipitation radars and ombrometers, for a variety of
reasons [4].

Since rain causes distinctive sounds on different surfaces,
the idea is to use acoustic sensor technology to measure
precipitation. Acoustic sensor technology could bring the
advantage of being relatively energy efficient to operate
and inexpensive to implement. Such rain sensor could
be used for the early detection of heavy rain in the sense
of an expansion of early warning systems, or as an ex-
ploration and real-time display of precipitation. In this
paper, a proof of concept experiment is described for the
use of an acoustic sensor for rain measurement.

Rain simulation
The purpose of the experimental setup, depicted in Fig-
ure 1, was to generate acoustic data for a machine learn-
ing algorithm, classifying different precipitation intensi-
ties. For this a self constructed sprinkler system produces

water droplets, falling on the rain sensors surface, where
the impact sounds were recorded.

Acoustic rainfall simulator
The sprinkler system consists of a water reservoir con-
nected to a drop generator. The generator consists of
25 drippers (arranged in squares, 2 cm distance), ensur-
ing a stochastic behaviour in dripping. Each dripper can
be infinitely adjusted in its flow rate, producing droplets
with a constant diameter of round about 5.75mm. This
diameter is represented in precipitation intensities from
25mm/hr up to at least 150mm/hr [5]. The generated
water droplets are falling on the sensor surface made
out of sheet steel (length 37 cm; width 30 cm; thickness
0.5mm). The area on which the water drops appear is
approximately 100 cm2 large. The distance between the
sensor surface and the drop generation is 2.5m. This is
the travel at which the average raindrop (> 0.5mm diam-
eter) reaches nearly its maximum speed of round about
5.8m/s [6][7]. The sensor surface is tilted with an angle of
10 degree. This inclination was seen as a compromise be-
tween drainage speed of the water and non adulteration
of the impact sound. To maintain a constant water level
in the water reservoir, water is steadily pumped up from
the collecting tank, creating an excessive water supply.
This is necessary to guarantee an even water pressure on
the drop generation, resulting in a time consistent water
drop speed. At the lower edge of the sensor surface, there
is a drain back to the collecting vessel to avoid dripping
noises. Fabric spanned around the sensor surface pre-
vents noise from water splashes.

Recording setup
The sound of the rain drops impacting on the sensor sur-
face is recorded by two Microtech Gefell MK 221 mi-
crophones with pre-amplifier MV 212. The microphones
are arranged on the back and the left side of the sur-
face. They are positioned at a distance of 0.5m from the
middle of the surface in a height of 1m. This was nec-
essary to prevent water splashes from reaching the mi-
crophones. The remaining setup consists of an G.R.A.S.
Power Module Type 12AQ, a measurement interface from
HEIM (PWAC, DIC6B and LMF2FE) and the recording
software siRecord from Soundtec. The microphones were
calibrated at 1 kHz, 94 dB(SPL) and samplerate of 96 kHz
was used.

System properties
The prototype implementation of the rain simulator
comes with limitations. However, as the goal was to
create different rain intensities, a reference for catego-
rization was needed. Therefore, the categories light rain,
moderate rain, heavy rain from the classification by the
American Meteorological Society was used [8]. A fourth
category (extreme rain) was added to increase the vari-
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imental rainfall simulator.
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(b) Complete view of the experimental setup on the left. Detailed view of the drop
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Figure 1: Overview of the experimental setup, including the sprinkler system, the rain sensor surface and part of the mea-
surement setup.

ability of the dataset and because of the limited adjust-
ment range of the dripper. The range covered by each
category is depicted in Figure 2. The mentioned limita-
tions are mainly caused by two problems. Due to manu-
facturing inaccuracies of the dripper, the drop frequency
is subject to certain error tolerances when setting the
dropper manually. This error is disproportionately high
at low drop frequencies, while high flow rates can be set
with a relatively low error tolerance. Considering this,
for each precipitation category one similar named rain
setting with a certain rounded precipitation rate (25, 43,
82 and 376mm/h) is derived.

Rain intensity classification
For the classification of rain intensities, it is necessary to
process the acoustic records in order to create datasets
for the usage of the machine learning algorithm.

Data preparation
Acoustic recordings of 11 hours were made for each rain
setting and subsequently cut into segments with a length
of 10 seconds. Equivalent to this, a 10 seconds record of
the trial-related noise was made before each rain record-
ing. This noise was caused for example by the water
pump. For the segments of the rain and noise recordings,
a multiband onset detection based on the spectral flux
was performed. After subtracting the detected onsets
in the noise signal from those of the respective rain seg-
ment, the contained raindrops could be quantified. When
at least two drops were contained in a segment, it was
included in the source dataset (SD). Figure 2 shows the
distribution within the resulting SD, consisting of 3,750
segments per rain setting and 15,000 segments in total.

FSD50K
The FSD50K is a human labeled open dataset, consisting
of 51,197 audio clips from freesound.org of common phys-
ical sources from everyday situations (Human sounds,

Sounds of things, Animals, Natural sounds and Music).
These are represented by 200 classes, drawn from the
AudioSet-Ontology. The recordings are provided as un-
compressed PCM16-bit 44.1 kHz mono audio files [9].
For testing the real world noise resistance of our classifi-
cation system, 1,918 clips that had at least a duration of
10 seconds, were extracted from the FSD50K. All labels
of the selected clips are part of 43 classes, that were cho-
sen from the FSD50K-200-class-ontology. These classes
were meant to represent the environmental noise of a ru-
ral village. The 43 classes can be divided into four main
classes (Human sounds, Sounds of things, Animals and
Natural sounds). Human sounds represents the speech of
single persons and small groups. Sounds of things con-
tains the noise of means of transportation and travel.
Animals represents the noise of domestic, farm and wild
animals. Natural sounds covers wind and sea noise.

Dataset generation
Two datasets, named A and B, were created (see Figure
2). For A the obtained SD was split 60% into a training
subset ATraining and 20% each into a validation and test
subset, AValidation and ATest. The subset ATest was over-
laid with the extracted clips from the FSD50K dataset at
SNR intervals of 0 to 10 dB and 10 to 20 dB, leading to
ATest,SNR 10-20dB and ATest,SNR 0-10dB. This generalized test
data was used to consider the classification performance
under the influence of simulated environmental noise.

As it was not possible to completely avoid interfering
noise during the rain recordings, the SD was filtered with
the use of spectral gating, resulting in dataset B. This de-
noising method estimates a threshold based on the noise
spectrogram to determine a spectral mask. Due to the
roughly steady background noise, an stationary approach
was chosen. This stationary spectral gating maintains a
constant threshold over the entire audio signal [10]. As
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Figure 2: The recordings of the rain settings were cut into 10 second segments and processed by an multiband onset detection.
If at least two onsets resp. drops are in a segment, it is inserted to the source dataset (SD). After splitting, the test subsets
were generalized by environmental noise. Finally, mel spectrograms of all subsets were extracted as features for the classifier.

noise reference, the same noise recording, as the one for
filtering in the onset detection, was used. According to
dataset A, dataset B was split into BTraining, BValidation
and BTest as well as BTest,SNR 10-20dB and BTest,SNR 0-10dB.

Feature extraction and classification method
To utilize the SD, mel spectrograms in the frequency
range of 200 to 20,000Hz were extracted from the au-
dio segments of dataset A and B . The motivation for
this lower cutoff frequency is that in a real application
of such precipitation sensors, wind and gusts would have
an energetic effect on the low-frequency range.

A convolutional neural network (CNN) was trained, us-
ing the extracted spectrograms. The network consists
of three two-dimensional convolutional layers, each with
2D max-pooling, followed by a flatten layer and three
dense layers (see Figure 3a). Dropouts of 0.25 were in-
serted after the first and second dense layers to reduce
potential over fitting. ReLU along with SoftMax acti-
vation was chosen to classify the four rain intensities.
The four rain intensities were classified using ReLU ac-
tivation along with SoftMax, except for the last output
dense layer where SoftMax was not used. Early stopping
was used to determine the training epochs, with training
terminated after minimizing the validation loss.

Evaluation
Depending on the intended application of a rain sensor,
various metrics can be used for evaluation. Recall is rel-
evant for monitoring the rainfall, since it describes the
percentage of a class that was recognized, while precision
is more appropriate for focusing on the share of correct
classifications within a class. For the following evalua-
tion, the harmonic mean of these two metrics, the F1-
score is considered. First, we consider the classifier CNNA,
which was trained on dataset A. It can be seen that the
classification on the cleaned test subset achieves approxi-
mately 100% correct classifications across all classes (see
Figure 3b). From the confusion matrix it can be derived,

that precision, recall and the F1-score rounded are equal
to 1.00 for all perception intensities.

Applying the classifier on the generalized test subset
TestA showed a degradation of the classification perfor-
mance. While the classes light rain, heavy rain and ex-
treme rain continue to achieve over 80% of correct clas-
sifications, the performance of moderate rain drops to
54.37%. Table 1 illustrates the impact by a recall of
only 0.54 for this class. If the SNR decreases to an in-

CNNA

Class SNR: [10; 20] dB
TP Precision Recall F1

Light Rain 85.52% 0.77 0.86 0.81
Moderate Rain 54.37% 0.97 0.54 0.70
Heavy Rain 82.10% 0.76 0.82 0.79
Extreme Rain 100.00% 0.79 1.00 0.88
Micro-Average 0.80 0.80 0.80

Table 1: Classification results on the generalized test data
of the classifier, which was trained on dataset A.

terval of 0 to 10 dB, a reliable classification of moderate
rain is no longer possible. The corresponding recordings
were attributed to all classes by the classifier with about
25% each, which can also be seen in the Precision-Recall-
Curve (see Figure 3c) by a recall of 0.25 and an F1-score
of 0.4. The reason for the above-average impairment of
this class, compared to the other precipitation intensi-
ties could be the overlapping of moderate rain with light
rain and heavy rain with respect to the drop frequency
and number of drops. Light rain and heavy rain show a
shift in classification towards higher rain intensities with
lower SNR. For instance, 61.30% of light rain is classified
as light rain, 0.27% as moderate rain, 15.56% as heavy
rain and 22.87% as extreme rain with a SNR between
0 and 10 dB. This can be explained by percussive signal
components contained in the added environmental noise.
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(a) Neural network
architecture.

(b) Confusion matrix of CNNA applied on subset ATest with-
out ambient noise.

(c) Classification results of CNNA evaluated with
subset ATest,SNR 0-10dB.

Figure 3: Architecture of the used neural network (a) and the resulting classification performance without (b) and with added
environmental sounds from the FSD50K dataset with SNR from 0 to 10 dB (c).

Comparing the performance of the classifier (CNNB),
which was trained on dataset B, a similarly high clas-
sification is achieved on the clean test data. However, if
data generalization is used, this is reflected in lower F1-
scores, independent of SNR interval, compared to those
of the CNNA. The only exception is themoderate rain class
(see Tabular 2).In summary, stationary spectral gating
worsens this application.

F1-Scores
Class SNR: [10; 20] dB SNR: [0; 10] dB

CNNA CNNB CNNA CNNB

Light Rain 0.81 0.88 0.63 0.78
Moderate Rain 0.70 0.47 0.40 0.37
Heavy Rain 0.79 0.59 0.60 0.43
Extreme Rain 0.88 0.72 0.71 0.60
Micro-Average 0.80 0.68 0.61 0.57

Table 2: Classification results on the generalized test subsets
of both classifier.

Conclusions
The implementation of the prototypical rain sensor was
done using a dataset generated in a sprinkler system.
Their recordings were passed to the feature extraction
and finally to a CNN classifier. The results on the clean
test data exhibit a high precision, recall and F1-score of
rounded 1.00 across all intensity classes. Once environ-
mental noise was overlaid on the test data, performance
decreased, especially for the moderate rain class. The
other rain intensities were still correctly classified at least
with over 60%. In an additional experiment spectral gat-
ing was used for denoising, which led to a decline of the
classification performance. This proof of concept indi-
cates that a good differentiation of rain intensities can be
achieved. Nevertheless, these are only tendencies, since
e.g. only one raindrop diameter could be realized with
the sprinkler system. Therefore, further investigations
with a more realistic sprinkler system are necessary.
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