Automatisierte Analyse von Industriegeräuschen

Der erfahrene Maschinenbediener oder Fertigungsingenieur sieht und hört oftmals, ob ein Fertigungsprozess ordnungsgemäß läuft oder eine Maschine einwandfrei funktioniert. Er ist damit ein wichtiger Teil der Qualitätssicherung. Mit Sensoren und entsprechender Signalanalyse wird in automatisierten Prüfverfahren versucht, diese menschlichen Fähigkeiten nachzubilden. Im Gegensatz zu bildgebenden KI-basierten Verfahren ist das Potential der akustischen Qualitätssicherung in Kombination mit Verfahren des maschinellen Lernens noch nicht ausgeschöpft. Um dieses Potential zu heben, stellen wir uns verschiedenen Herausforderungen, die sich im industriellen Umfeld ergeben.

 

  • Adaptive oder einfach anpassbare Prüfverfahren für eine flexible Produktion mit sich ändernden Produktions- und Prozessparametern.
  • Hohe Qualität der automatisierten Produktion führt zu einer geringen Anzahl von »n.i.O.-Teilen«. Dementsprechend sind Lernalgorithmen, die mittels weniger oder unausgewogener Daten arbeiten können notwendig.
  • Zuverlässige und robuste Erkennung auch unter lauten Umgebungsbedingungen.

Leistungen

  • Entwicklung anwendungsspezifischer Klassifizierungs-Algorithmen
  • Consulting bezüglich angewendeter akustischer Sensorik
  • Workshops zu Grundlagen der KI-basierten Signalanalyse

Produkte

 

ISAAC

Eigene KI-Modelle trainieren, Qualitätskontrolle verbessern

Forschung

 

Forschungsprojekt

AKoS

Akustische Kontrolle von Schweißnähten bei sicherheitskritischen Bauteilen im Rahmen der Qualitätssicherung

 

Forschungsprojekt

DMD4Future

Digitalisierte Material-und Datenwertschöpfungsketten

 

Forschungsprojekt

X-ProDev

Accelerated Product Development

 

Forschungsprojekt

SEC-Learn

Sensor Edge Cloud für verteiltes Lernen

Anhand prototypischer Demonstratoren erprobt und zeigt das Fraunhofer IDMT die Funktions- und Wirkungsweise neuartiger Methoden zur automatischen akustischen Ereignisdetektion.

Automatische Erkennung von Druckluftleckagen

Zuverlässig und automatisiert hörbare Leckagen erkennen dank Luftschallanalyse und maschineller Lernverfahren.

Druckluft ist für viele deutsche Industrie- und Handwerksbetriebe eine unerlässliche Ressource zum Betreiben von Maschinen und Anlagen. Gleichzeitig stellt sie aber auch einen hohen Kostenfaktor auf der Stromrechnung dar. Unternehmen verschwenden durchschnittlich 30 Prozent der erzeugten Energie aufgrund der unbemerkten Entweichung von teurer Druckluft. Zur Erkennung solcher Leckagen setzt man unter anderem auf Prüfverfahren mittels Ultraschall sowie auf das bloße Gehör von geschultem Personal.

Das Fraunhofer IDMT hat nun in einem Experiment getestet, ob sich dieses »Hören« automatisieren und unter Verwendung von Mikrofonen in Kombination mit maschinellen Lernverfahren nachbilden lässt, um ein zuverlässiges System zur Leckagendetektion zu entwickeln. Erste Ergebnisse zeigen, dass dies generell möglich ist.

Automatische Erkennung unterschiedlicher Materialien anhand von Pling-Geräuschen

Der Prinzipdemonstrator »Air-Hockey Tisch« bietet Besucherinnen und Besuchern auf Messen und Konferenzen neben dem fachlichen Austausch eine sportliche Abwechslung.

Anhand eines für den Forschungseinsatz modifizierten Air-Hockey Tischs wird an neuartigen Verfahren zur akustischen Qualitätssicherung im industriellen Kontext gearbeitet. Hier kommen Pucks zum Einsatz, die aus verschiedenen Materialien gefertigt sind und unterschiedliche, aber sehr charakteristische »Pling«-Geräusche verursachen, sobald sie an die Bande des Spielgeräts treffen. Während des Spiels treten diese akustischen Signale so häufig und unregelmäßig auf, dass sie zur Analyse mittels maschineller Lernverfahren genutzt werden können, um eine zuverlässige Aussage über das Material zu treffen, aus dem die Pucks gefertigt sind.

Eingesetzt werden kann dieses berührungslose Verfahren, bei dem das Fraunhofer IDMT seine langjährige Expertise in den Bereichen akustische Messtechnik, Signalverarbeitung und maschinelles Lernen kombiniert, unter anderem zur Erkennung von Materialfehlern oder in der In-Line Überwachung von Schweißprozessen. Werden akustisch wahrnehmbare Fehler bereits im Prozess festgestellt, kann dieser abgebrochen und zeitnah neu gestartet werden. Das akustische Prüfverfahren des Fraunhofer IDMT ist zudem zerstörungsfrei und dient somit der Reduzierung von teurem Prüfschrott.

Automatische Erkennung von Materialfehlern anhand von Rollgeräuschen

Der Kugelbahndemonstrator verdeutlicht die Leistungsfähigkeit des akustischen Monitoring-Verfahrens im industriellen Einsatz. Als Anwendungsbeispiel wurde die Erkennung von Fehlern in Oberflächen gewählt.

Drei unterschiedlich beschichtete Kugeln rollen in zufälliger Reihenfolge durch das Kugelbahnsystem. Die Bewegungsgeräusche der Kugeln werden von kleinen Mikrofonen aufgenommen und durch maschinelle Lernalgorithmen analysiert. Auf diese Weise werden die Kugeln in Echtzeit überwacht und anhand ihres spezifischen Rollgeräusches identifiziert. Das Analyseergebnis - die Reihenfolge der Ankunft - wird sofort grafisch auf einem Display dargestellt. Das Institut zeigt mit diesem Prinzip-Demonstrator neue akustische Verfahren zur Qualitätssicherung – berührungslos, zerstörungsfrei und sicher integriert.

Akustische Qualitätskontrolle von Drehteilen

Mit Luftschallanalyse und KI Haarrisse in Drehteilen zuverlässig erkennen

Im Rahmen der Qualitätsprüfung durchlaufen die gezeigten Drehteile üblicherweise eine 100 % visuelle Endkontrolle. Geprüft wird auf feinste Haarrisse, die optisch kaum erkennbar sind, jedoch auf einen Qualitätsmangel hindeuten. In einem Experiment hat das Fraunhofer IDMT untersucht, inwieweit Haarrisse mittels Luftschallanalyse mit KI automatisiert detektiert werden können. Als Prüfschritt in der Endkontrolle wurde der Aufprall eines Drehteils auf eine Platte aufgenommen und entsprechend den Klassen »i.O.« und »n.i.O« zugeordnet. Dabei stellten sich die Wissenschaftlerinnen und Wissenschaftler den Fragestellungen, ob die Klangspektren des Aufpralls eine Unterscheidung in Gut- und Fehlteile zulassen, welche Parameter diese Klangspektren beeinflussen (bspw. Fallhöhe oder Material der Platte) und welche Mikrofonpositionen sich am besten für die Aufnahmen und zur späteren Analyse eignen. Erste Ergebnisse zeigten, dass es generell möglich ist, die Drehteile anhand des Aufprallgeräusches in zwei Klassen zu unterscheiden.

Die Datensätze wurden in mehreren wissenschaftlichen Publikationen auf internationalen Konferenzen vorgestellt und sollen der wissenschaftlichen Community als potenzielle Benchmarks für Vergleichsexperimente dienen.

Industrielle Audiodatensätze

[Englisch]

 

  • IDMT-ISA-Electric-Engine
    An audio database for the automatic analysis of operational states of electric enginges
  • IDMT-ISA-Metal-Balls
    An audio database for the automatic surface detection of metal balls
  • IDMT-ISA-Tubes
    An audio database for the automatic detection of bulk materials
  • IDMT-ISA-Pucks
    An audio database for the automatic detection of air-hockey pucks of different plastic materials