Sound Field Control

Good sound instead of noise

Sound field control describes the targeted influencing of sound fields using intelligent signal processing algorithms that control (vibro)acoustic actuators. The aim is to influence the sound in such a way that the desired sound field or listening experience is created at the listening location. Our research focuses on adaptive signal processing using machine learning methods, the use of sensor and actuator arrays and control technology. In terms of application, we focus on the areas of entertainment, operational safety in the mobility and industrial sectors and active noise protection for environments and individuals.

News and upcoming events

 

Conference I March 18 – 21, 2024 I Hannover

DAGA 2024

This year, Fraunhofer IDMT will once again be presenting current research results in various contributions at the DAGA.

 

Research project

VibroClean

Acoustic solar module cleaning

Desired and undesired sounds and sound fields

Noise and unwanted sounds have been proven to impair human health, well-being, and performance. Disturbing noises, for example, when talking on the phone in the car or during mobile work, impair the ability to concentrate. Undisturbed sleep and relaxing music, on the other hand, provide a good basis for high performance. A distinction can therefore be made between undesired sound fields, e.g., noise, and desired sound fields, e.g., emergency announcements or music at concert venues. Often, both undesired and desired sound fields occur simultaneously. There is therefore a need to reduce noise for the benefit of telephone conversations, music reproduction, or restful sleep.

For these reasons, researchers are working on various approaches to detect (with sensors), analyze and influence sound fields. The physical acoustic phenomena are usually considered taking into account human auditory perception.

Active enhancement and targeted generation of sound fields

The creation and control of sound fields requires a comprehensive understanding of their generation, propagation, and detection. Noise sound fields, such as those that occur in ventilation systems, can be compensated for by using active absorbers. Currently, there is a lack of solutions that are easy to put into operation, featuring self-monitoring and automatic recalibration.

In cars, not only disturbing vehicle, and traffic noises, but also noises from the neighboring seat (speech, music, etc.) should be suppressed. For this purpose, the various sound fields and their propagation in the car chassis and in the air must be detected by sensors, evaluated, and used as a starting point for controlling existing anti-sound measures. Special sound fields, such as alarm signals, must be handled separately.

The technical solution should initialize itself as independently as possible. Operating parameters should automatically adapt to changing system characteristics (aging, number of passengers, loading, etc.) and environmental conditions. To achieve this, algorithms must be developed that are computationally efficient, energy efficient, and robust.

How to proceed

Depending on the application, different methods are used to control sound fields:

  • Active Noise Control (ANC)
  • near-field sound reinforcement
  • loudspeaker array technology for: Beamforming, Wave Field Synthesis, planar speakers
  • Beamforming
  • Wave Field Synthesis
  • active absorbers
  • metamaterials

 

Research project

Metavib

Metamaterials for controlling vibroacoustics by means of the resonator effect

 

Research project

VibroClean

Acoustic solar module cleaning

 

Research project

Clean Air Acoustics

Acoustically optimized compact ventilation systems and air purification devices

Products

 

SpatialSound Wave for Professional Audio and Entertainment

Object-based audio production and reproduction for an authentic sound experience

 

SpatialSound Wave for Automotive Audio

The audio platform for the car of the future: holistic sound management for creating immersive and interactive audio content

 

Personal Sound Zones

Individual listening comfort

 

Planar Speakers

Great sound quality and space-saving, flexible design

Services

  • sensory detection of airborne and structure-borne sound fields (sound pressure, sound velocity, sound intensity) 
  • sound field decomposition into single sound sources
  • transfer path analysis for sound sources
  • generation of static/variable sound fields by means of loudspeaker/speaker array/flat loudspeaker
  • generation of focussed sound fields/spatially limited sound fields
  • generation of anti-sound fields for sound reduction
  • sound optimization of loudspeaker reproduction systems

 

Equipment

 

Equipment

Equipped with state-of-the-art special rooms and laboratories we enable a a wide variety of acoustic measurements and investigations. Please feel free to contact us!

Jahr
Year
Titel/Autor:in
Title/Author
Publikationstyp
Publication Type
2023 Vibroakustische Metamaterialien. Metamaterialien zur Beeinflussung der Vibroakustik mittels Resonatoreffekt
Atzrodt, Heiko; Manushyna, Daria; Rieß, Sebastian; Hülsebrock, Moritz; Troge, Jan; Lühring, Andreas; Brandstätt, Peter; Rohlfing, Jens; Troll, Agostino; Fischer, Georg; Küller, Jan; Beer, Daniel
Zeitschriftenaufsatz
Journal Article
2023 Measurement of Loudspeaker Parameters with a Raspberry Pi
Rodríguez Mejía, Juan Manuel; Edelmann, Niklas; Fischer, Georg; Männchen, Andreas
Konferenzbeitrag
Conference Paper
2022 Object-Based Audio as Platform Technology in Vehicles
Sladeczek, Christoph; Seideneck, Mario; Lorenz, Wolfgang; Pursche, Katrin; Schneider, Benjamin
Zeitschriftenaufsatz
Journal Article
2022 Luftreinigungsgeräte - akustische Anforderungen und Optimierungsmöglichkeiten
Beer, Daniel; Fritzsche, Paul; Fiedler, Bernhard; Rohlfing, Jens; Bay, Karlheinz; Troge, Jan; Millitzer, Jonathan; Tamm, Christoph
Konferenzbeitrag
Conference Paper
2022 Adaptive Automatic Compensation of Transducer Nonlinearities Using Extremum-Seeking Control
Männchen, Andreas; Fischer, Georg; Fritsch, Tobias; Fiedler, Matthias; Beer, Daniel
Konferenzbeitrag
Conference Paper
2021 Measuring Voice Coil Temperature using Ultrasonic Pilot Tones
Fried, Johannes; Fritsch, Tobias
Zeitschriftenaufsatz
Journal Article
2021 Automatic Classification of Enclosure-Types for Electrodynamic Loudspeakers
Werner, Johannes; Fritsch, Tobias
Zeitschriftenaufsatz
Journal Article
2021 Investigations on working principles and design methods for metamaterial silencers
Troll, Agostino; Rohlfing, Jens; Küller, Jan; Fischer, Georg; Beer, Daniel; Lühring, Andreas
Konferenzbeitrag
Conference Paper
2021 Simulating MEMS loudspeakers
Fritsch, Tobias; Küller, J.
Vortrag
Presentation
2021 MEMS Acoustical Actuators: Principles, Challenges and Perspectives
Beer, D.; Fischer, G.; Fritsch, T.; Fiedler, M.; Küller, J.; Zhykhar, A.
Konferenzbeitrag
Conference Paper
2020 MEMS based speakers - sounds good?!
Beer, Daniel; Küller, Jan; Zhykhar, Albert; Fritsch, Tobias; Männchen, Andreas; Strehle, Steffen; Knechtel, Roy; Bös, Joachim
Konferenzbeitrag
Conference Paper
2020 Input-Output Linearization of a MEMS Loudspeaker Using a Hammerstein Model
Belgradskaia, Elena; Fischer, Georg; Zhykhar, Albert; Fritsch, Tobias
Konferenzbeitrag
Conference Paper
2020 MEMS-Lautsprecher - ein Paradigmenwechsel
Beer, Daniel; Rusconi, Andrea; Stoppel, Fabian; Ehrig, Lutz
Zeitschriftenaufsatz
Journal Article
2020 Sound Propagation in Microchannels
Küller, Jan; Zhykhar, Albert; Beer, Daniel
Konferenzbeitrag
Conference Paper
2020 Lautsprecher in MEMS-Technologie. Kleinstlautsprecher für mobile Anwendungen
Fritsch, Tobias
Vortrag
Presentation
2020 Visualizing Neural Network Decisions for Industrial Sound Analysis
Grollmisch, Sascha; Johnson, David; Liebetrau, Judith
Konferenzbeitrag
Conference Paper
2019 Acoustic Validation of Electrostatic All-Silicon MEMS-Speakers
Ehrig, Lutz; Kaiser, Bert; Schenk, Hermann A.G.; Stolz, Michael; Langa, Sergiu; Conrad, Holger; Schenk, Harald; Männchen, Andreas; Brocks, Tobias
Konferenzbeitrag
Conference Paper
2019 Design and Electroacoustic Analysis of a Piezoelectric MEMS In-Ear Headphone
Männchen, Andreas; Stoppel, Fabian; Brocks, Tobias; Niekiel, Florian; Beer, Daniel; Wagner, Bernhard
Konferenzbeitrag
Conference Paper
2019 Piezoelektrische MEMS-Lautsprecher für In-Ear-Anwendungen
Stoppel, F.; Männchen, A.; Niekiel, F.; Beer, D.; Giese, T.; Pieper, I.; Kaden, D.; Grünzig, S.; Wagner, B.
Konferenzbeitrag
Conference Paper
2019 Sounding Industry: Challenges and Datasets for Industrial Sound Analysis
Grollmisch, Sascha; Abeßer, Jakob; Liebetrau, Judith; Lukashevich, Hanna
Konferenzbeitrag
Conference Paper
2019 Deep Neural Network Approaches for Selective Hearing based on Spatial Data Simulation
Hestermann, Simon; Lukashevich, Hanna; Sladeczek, Christoph
Konferenzbeitrag
Conference Paper
2019 New potential for portable spatial audio with MEMS based speakers
Beer, Daniel; Brocks, Tobias; Küller, Jan; Strehle, Steffen; Koch, Tilman
Konferenzbeitrag
Conference Paper
2018 Wave field synthesis
Sporer, Thomas; Brandenburg, Karlheinz; Brix, Sandra; Sladeczek, Christoph; Roginska, Agnieszka; Geluso, Paul
Aufsatz in Buch
Book Article
2018 Immersive Object-Based Mastering
Hestermann, Simon; Seideneck, Mario; Sladeczek, Christoph
Konferenzbeitrag
Conference Paper
2018 Analysis of the mechanical vibration and acoustic behavior of a piezoelectric MEMS microspeaker
Männchen, A.; Beer, D.; Niekiel, F.; Nowak, J.; Stoppel, F.; Wagner, B.
Konferenzbeitrag
Conference Paper
2017 Stereophonic microphone array for the recording of the direct sound field in a reverberant environment
Gößwein, Jonathan Albert; Grosse, Julian; Par, Steven van de
Zeitschriftenaufsatz
Journal Article
2016 High-directional beamforming with a miniature loudspeaker array
Beer, D.; Bergner, J.; Wolf, M.; Franck, A.; Sladeczek, C.; Zhykhar, A.
Konferenzbeitrag
Conference Paper
2014 An example of spatial sound reinforcement for open-air installations: Carmina Burana at a nature park
Frutos-Bonilla, J.; Zuleeg, R.; Rodigast, R.376821f3-e701-4902-8f4f-43ecf40dc05e
Konferenzbeitrag
Conference Paper
2013 Spatial sound reproduction for the prediction of machine acoustics - A case study
Brix, S.; Wolf, M.; Sladeczek, C.; Zhykhar, A.
Konferenzbeitrag
Conference Paper
2013 Intelligent multichannel signal processing for future audio reproduction systems
Brandenburg, K.; Brix, S.; Schneider, M.; Franck, A.; Kellermann, W.
Konferenzbeitrag
Conference Paper
2010 Active minimization of periodic sound inside a vibro-acoustic rectangular enclosure using finite element model
Mohamady, S.; Montazeri, A.; Ahmad, R.K.R.
Konferenzbeitrag
Conference Paper
2008 A graphical tool set for analyzing wave field synthesis algorithms
Korn, T.
Konferenzbeitrag
Conference Paper
2006 Vorrichtung und Verfahren zur Ansteuerung einer Beschallungsanlage und Beschallungsanlage
Rodigast, R.376821f3-e701-4902-8f4f-43ecf40dc05e; Strauss, M.
Patent
2006 A new approach for direct interaction with graphical representations of room impulse responses for the use in wave field synthesis reproduction
Melchior, F.; Langhammer, J.; Vries, D. de
Konferenzbeitrag
Conference Paper
2005 Vorrichtung und Verfahren zum Synchronisieren eines Audiossignals mit einem Film
Rodigast, R.376821f3-e701-4902-8f4f-43ecf40dc05e; Munderloh, M.; Sporer, T.; Beckinger, M.
Patent
Diese Liste ist ein Auszug aus der Publikationsplattform Fraunhofer-Publica

This list has been generated from the publication platform Fraunhofer-Publica